最近,深度加固学习(RL)在机器人操作应用中表现出了一些令人印象深刻的成功。但是,由于样本效率和安全性问题,现实世界中的培训机器人是不平凡的。提出了SIM到现实的转移来解决上述问题,但引入了一个名为“现实差距”的新问题。在这项工作中,我们通过使用单个摄像头的输入来解决上述问题,为基于视觉的组装任务引入SIM模型学习框架,并在模拟环境中进行培训。我们提出了一种基于循环一致的生成对抗网络(CycleGAN)和力量控制转移方法来弥合现实差距的域适应方法。我们证明,在模拟环境中训练有训练的拟议框架可以成功地转移到真实的孔洞设置中。
translated by 谷歌翻译
在现代制造环境中,对接触式任务的需求正在迅速增长。但是,很少有传统的机器人组装技能考虑任务执行过程中的环境限制,并且大多数人将这些限制作为终止条件。在这项研究中,我们提出了基于推动的混合位置/力组装技能,该技能可以在任务执行过程中最大化环境限制。据我们所知,这是在执行程序集任务期间使用推动操作考虑的第一项工作。我们已经证明,我们的技能可以使用移动操纵器系统组装任务实验最大化环境约束的利用,并在执行中实现100 \%的成功率。
translated by 谷歌翻译
自动开放域对话评估是对话系统的关键组成部分。最近,基于学习的评估指标在开放域对话评估中取得了最先进的表现。但是,这些仅关注一些素质的指标很难全面评估对话。此外,这些指标缺乏有效的分数组成方法,无法获得各种评估质量。为了解决上述问题,我们提出了基于相关性重新缩放(MME-CR)的多项式评估,以评估开放域对话。首先,我们建立了一个评估度量,该评估度量由5组平行的子对象组成,称为多金属评估(MME),以全面评估对话的质量。此外,我们提出了一种称为相关重新缩放(CRS)的新型分数组成方法,以模拟子计量与多样性之间的关系。我们的方法MME-CRS在DSTC10 TRACK5 SubTask1自动开放域对话评估挑战的最终测试数据中排名第一,这证明了我们提出的方法的有效性。
translated by 谷歌翻译
随着对比学习的兴起,无人监督的图形表示学习最近一直蓬勃发展,甚至超过了一些机器学习任务中的监督对应物。图表表示的大多数对比模型学习侧重于最大化本地和全局嵌入之间的互信息,或主要取决于节点级别的对比嵌入。然而,它们仍然不足以全面探索网络拓扑的本地和全球视图。虽然前者认为本地全球关系,但其粗略的全球信息导致本地和全球观点之间的思考。后者注重节点级别对齐,以便全局视图的作用出现不起眼。为避免落入这两个极端情况,我们通过对比群集分配来提出一种新颖的无监督图形表示模型,称为GCCA。通过组合聚类算法和对比学习,它有动力综合利用本地和全球信息。这不仅促进了对比效果,而且还提供了更高质量的图形信息。同时,GCCA进一步挖掘群集级信息,这使得它能够了解除了图形拓扑之外的节点之间的难以捉摸的关联。具体地,我们首先使用不同的图形增强策略生成两个增强的图形,然后使用聚类算法分别获取其群集分配和原型。所提出的GCCA进一步强制不同增强图中的相同节点来通过最小化交叉熵损失来互相识别它们的群集分配。为了展示其有效性,我们将在三个不同的下游任务中与最先进的模型进行比较。实验结果表明,GCCA在大多数任务中具有强大的竞争力。
translated by 谷歌翻译
我们开发了一个新颖的框架,将稀疏集团拉索的正规化者添加到深度学习中的自适应优化者家族中,例如动量,亚当,亚当,阿姆斯格拉德,阿德哈西亚人,并创建了新的优化者,这些优化者被称为群体动量,命名因此,Adagrad小组,亚当集团,Amsgrad集团和Adahessian集团等。我们基于原始偶的方法在随机凸设置中建立理论上证明的收敛保证。我们评估了新优化器对具有最先进的深度学习模型的三个大型现实广告单击数据集的正则效应。实验结果表明,与使用幅度修剪方法的后处理过程相比,模型的性能可以在相同的稀疏度水平上显着提高。此外,与没有幅度修剪的情况相比,我们的方法可以实现极高的稀疏性,并具有明显的更好或高度竞争性的性能。
translated by 谷歌翻译
Dynamic Graph Neural Networks (DGNNs) have been broadly applied in various real-life applications, such as link prediction and pandemic forecast, to capture both static structural information and temporal characteristics from dynamic graphs. Combining both time-dependent and -independent components, DGNNs manifest substantial parallel computation and data reuse potentials, but suffer from severe memory access inefficiency and data transfer overhead under the canonical one-graph-at-a-time training pattern. To tackle the challenges, we propose PiPAD, a $\underline{\textbf{Pi}}pelined$ and $\underline{\textbf{PA}}rallel$ $\underline{\textbf{D}}GNN$ training framework for the end-to-end performance optimization on GPUs. From both the algorithm and runtime level, PiPAD holistically reconstructs the overall training paradigm from the data organization to computation manner. Capable of processing multiple graph snapshots in parallel, PiPAD eliminates the unnecessary data transmission and alleviates memory access inefficiency to improve the overall performance. Our evaluation across various datasets shows PiPAD achieves $1.22\times$-$9.57\times$ speedup over the state-of-the-art DGNN frameworks on three representative models.
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
基于语义相似性的代码克隆检测方法在软件工程任务中具有重要价值(例如,软件演进,软件重用)。传统的代码克隆检测技术更加注重语法级别的代码的相似性,并且不太注重代码的语义相似性。结果,忽略语义中类似的候选代码。要解决此问题,我们提出了一种基于语义相似性的代码克隆检测方法。通过将代码视为连续发生的一系列相互依存事件,我们设计了一个模型即欧欧,基于事件嵌入和事件依赖性编码代码语义信息。 EDAM模型使用事件嵌入方法来模拟程序语句的执行特征以及所有语句之间的数据依赖信息。以这种方式,我们可以将程序语义信息嵌入到向量中,并使用矢量来检测语义中类似的代码。实验结果表明,我们的EDAM模型的性能优于用于码克隆检测的最先进的开源模型。
translated by 谷歌翻译
在最佳恢复中,通过采用与在要学习的功能上的显式模型假设相关联的最坏情况的透视来确定从观察数据的学习功能的任务是确定的。在Hilbert Spaces的框架中工作,本文认为基于近似性的模型假设。它还包含通过$ \ ell_2 $界限的附加误差建模的观察性不准确性。早期的作品已经证明,正规化提供了在这种情况下最佳的算法,但没有完全识别所需的近似参数。本文填补了本地方案和全局方案的差距。在当地的情况下,这增加了Chebyshev中心的确定,Beck和Eldar的半纤维配方(仅限于复杂的设置)被更具直接的方法补充说,观察功能具有正交代表。在所述方法中,所需参数是通过标准方法可以解析的等式的解决方案。在全局方案中,其中线性算法规则,Micchelli等人的作品中的参数难以捉摸。被发现为Semidefinite计划的副产品。另外并且非常令人惊讶地,在具有正交代表的观测功能的情况下,建立任何正则化参数是最佳的。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译